Tutorial 2 : Selected problems of Assignment 2

Leon Li

18/9/2019

Assumption Throughout the tutorial, $f = f_1 + i f_2 : [-\pi, \pi] \rightarrow \mathbb{C}$ is a complex-valued 277-periodic integrable Function with Fourier series $S(f) = \sum_{n=1}^{\infty} \widehat{f}(n) e^{inx}$

Q1) [Ex 2, Q4) Suppose in addition, f is differentiable
such that f': [-71, T]
$$\rightarrow \mathbb{C}$$
 satisfies the Assumption.
Show that $\widehat{f}(n) = in \widehat{f}(n)$, $\forall n \in \mathbb{Z}$
Sol) Method 1: Assuming integration by parts for complex-valued functions.
Fact For any such functions $g, h : [-71, T] \rightarrow \mathbb{C}$,
 $\int_{-\pi}^{\pi} g'(x)h(x)dx = [g(x)h(x)]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} g(x)h'(x)dx$
 $\therefore 2\pi \widehat{f}'(n) = \int_{-\pi}^{\pi} f'(x) e^{-inx} dx = [f(x)e^{-inx}]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} [f(x)(-ine^{-inx})dx = in2\pi\widehat{f}(n)$
Method 2: Using integration by parts for real-valued functions.
 $2\pi \widehat{f}'(n) = \int_{-\pi}^{\pi} f'(x) e^{-inx} dx = \int_{-\pi}^{\pi} [f_{+}'(x) + i f_{2}'(x)](\cos nx - i sin nx) dx$
 $= \int_{-\pi}^{\pi} (f_{+}'(x) \cos nx + f_{2}'(x) \sin nx)dx + i \int_{-\pi}^{\pi} (f_{+}'(x) \cos nx - f_{+}'(x) \sin nx)dx)$
 $= \{[f_{+}(x) \cos nx + f_{+}(x) \sin nx]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} (f_{+}(x) (-n \sin nx) - f_{+}(x) (n \cos nx))dx]$
 $+ i \{[f_{+}(x) \sin nx - f_{+}(x) \cos nx + i \int_{-\pi}^{\pi} (f_{+}(x) \cos nx + f_{+}(x) \cos nx)]dx]$
 $= n (\int_{-\pi}^{\pi} (f_{+}'(x) \sin nx - f_{2}(x) \cos nx)dx + i \int_{-\pi}^{\pi} (f_{+}(x) \sin nx) - f_{+}(x) (n \cos nx)]dx]$

(Q2) [Ex 2, Q7) Define F: [
$$-\pi,\pi$$
] $\rightarrow C$ by $F(x) = \int_{\pi}^{x} f(t) dt$
(a) Show that F is 2π periodic $\iff \hat{f}(0) = 0$
(b) Suppose in addition, f is continuous with $\hat{f}(0) = 0$, show that
F satisfies the Assumption with $\hat{F}(n) = \frac{1}{n} \hat{f}(n)$. $\forall n \neq 0$
Sol) (a) Note that $F(x+2\pi) = \int_{-\pi}^{x+2\pi} f(t) dt = \int_{-\pi}^{x} f(t) dt + \int_{x}^{x+2\pi} f(t) dt$
 $= F(x) + \int_{-\pi}^{\pi} f(t) dt = F(x) + 2\pi \hat{f}(0)$
 \therefore F is 2π -periodic $\iff F(x) = F(x+2\pi), \forall x \in [-\pi,\pi] \iff \hat{f}(0) = 0$
(b) Since f is continuous, by Fundamental Theorem of Calculus,
F is differentiable on $[-\pi,\pi]$ with $F'(x) = f(x)$ satisfying the Assumption.
Moreover, Since $\hat{f}(0)=0$, by (a), F also satisfying the Assumption.
 \therefore By Q1, $\hat{f}(n) = \hat{F}'(n) = i\pi \hat{F}(n), \forall n \in \mathbb{Z}$

(Q3) [Ex 2, Q10) Suppose in addition, f is Lipschitz continuous.
Show that there exists C>0 such that for all
$$n\neq 0 \in \mathbb{Z}$$
,
 $|\widehat{f}(n)| \leq \frac{C}{|M|}$
Sol) Since f is Lipschitz continuous, $\exists L>0$ such that for all $x, y \in [-\pi, \pi]$,
 $|f(x)-f(y)| \leq L|x-y|$.
Note that for all $n\neq 0$, $2\pi \widehat{f}(n) = \int_{-\pi}^{\pi} f(x)e^{-inx} dx$
 $(Put \times = y + \frac{\pi}{h}) = \int_{-\pi}^{\pi} f(y + \frac{\pi}{h})e^{-in(y + \frac{\pi}{h})} dy$
 $= -\int_{-\pi}^{\pi} f(y + \frac{\pi}{h})e^{-iny} dy$
 $\therefore |\widehat{f}(n)| = \frac{1}{2\pi} (\frac{1}{2}|\int_{-\pi}^{\pi} (f(x) - f(x + \frac{\pi}{h}))e^{-inx} dx|)$
 $\leq \frac{1}{4\pi} \int_{-\pi}^{\pi} |f(x) - f(x + \frac{\pi}{h})|e^{-inx}| dx$
 $\leq \frac{1}{4\pi} \cdot 2\pi \cdot L_{|n|}^{\pi} = \frac{\pi L}{2|m|} = \frac{C}{|m|}$ by setting $C = \frac{\pi}{2}L$